Arquivo para a categoria 'Sincronização de tempo'

Utilizando UTC

Quarta-feira, dezembro 17th, 2008

Para receber e distribuir e autenticar a fonte de tempo UTC, atualmente existem dois tipos de NTP servidor, o GPS NTP servidor e nos Servidor NTP referenciado por rádio. Embora ambos estes sistemas distribuam UTC de maneiras idênticas, a maneira como eles recebem a informação de temporização difere.

A GPS servidor de horário NTP é uma fonte de tempo e frequência ideal porque pode fornecer um tempo altamente preciso em qualquer parte do mundo usando componentes relativamente baratos. Cada satélite GPS transmite em duas freqüências L2 para o uso militar e L1 para uso por civis transmitidos em 1575 MHz, antenas GPS e receptores de baixo custo estão agora amplamente disponíveis.

O sinal de rádio transmitido pelo satélite pode passar através das janelas, mas pode ser bloqueado por edifícios de modo que o local ideal para uma antena GPS é em um telhado com uma boa visão do céu. Quanto mais satélites que pode receber melhor o sinal. No entanto, as antenas telhado-montadas pode ser propenso a ataques de iluminação ou de outros surtos de tensão assim que um supressor é altamente recomendável que está sendo instalado em linha no cabo GPS.

O cabo entre a antena GPS e o receptor também é crítico. A distância máxima que um cabo pode executar é normalmente apenas medidores 20-30, mas um cabo coaxial de alta qualidade combinado com um amplificador GPS colocado em linha para aumentar o ganho da antena pode permitir o excesso do cabo do medidor 100. Isso pode dificultar a instalação em edifícios maiores se o servidor estiver muito longe da antena.

Uma solução alternativa é usar um rádio referenciado O servidor NTP. Estes dependem de uma série de transmissões de rádio nacionais de tempo e frequência que a hora de transmissão UTC. Na Grã-Bretanha, o sinal (chamado MSF) é transmitido pela Nacional Laboratório de Física Em Cumbria, que serve de referência nacional do Reino Unido, também existem sistemas semelhantes nos EUA (WWVB) e na França, na Alemanha e no Japão.

Baseado em rádio NTP servidor geralmente consiste em um servidor de horário montável em rack e uma antena, consistindo de uma barra de ferrite dentro de um gabinete de plástico, que recebe o tempo de rádio e transmissão de freqüência. Deve sempre ser montado horizontalmente em um ângulo recto em direção à transmissão para uma força de sinal ideal. Os dados são enviados em pulsos, 60 por segundo. Estes sinais fornecem tempo UTC para uma precisão dos microseconds 100, no entanto, o sinal de rádio possui uma faixa finita e é vulnerável a interferências.

2008 será um segundo maior Leap Second para ser adicionado à UTC

Terça-feira, dezembro 16th, 2008

As celebrações de Ano Novo terão que esperar outro segundo este ano, já que o Serviço Internacional de Rotação da Terra e Sistemas de Referência (IERS) decidiu que 2008 deve ter Leap Second adicionado.

O IERS anunciou em Paris em julho que um Leap Second positivo deveria ser adicionado ao 2008, o primeiro desde dezembro 31, 2005. O Leap Seconds foi introduzido para compensar a imprevisibilidade da rotação da Terra e para manter a UTC (Tempo Universal Coordenado) com GMT (Meio-Meio de Greenwich).

O novo segundo extra será adicionado no último dia deste ano em horas 23, 59 minutos e segundos 59 Tempo Universal Coordenado - 6: 59: 59 pm Hora Padrão Oriental. 33 Leap Seconds foi adicionado desde 1972

NTP servidor Os sistemas que controlam a sincronização do tempo em redes de computadores são todos regidos por UTC (Tempo Universal Coordenado). Quando um segundo adicional é adicionado no final do ano UTC será automaticamente alterado como o segundo adicional. #

Se um NTP servidor recebe um sinal de tempo para transmissões como MSF, WWVB ou DCF ou a partir da rede GPS, o sinal carregará automaticamente o anúncio Leap Second.

Aviso de Leap Second do Serviço Internacional de Rotação de Terra e Sistemas de Referência (IERS)

SERVICE INTERNATIONAL DE LA ROTATION TERRESTRE ET DES SYSTEMES DE REFERENCE

SERVICE DE LA ROTATION TERRESTRE
OBSERVATOIRE DE PARIS
61, Av. do Observatoire 75014 PARIS (França)
Tel. : 33 (0) 1 40 51 22 26
FAX: 33 (0) 1 40 51 22 91
e-mail: services.iers@obspm.fr
https://hpiers.obspm.fr/eop-pc

Paris, 4 2008 julho

Boletim C 36

Para as autoridades responsáveis ​​pela mensuração e distribuição do tempo

UTC TIME STEP
no 1st de janeiro 2009

Um salto positivo em segundo será introduzido no final de dezembro 2008.
A sequência de datas dos segundos marcadores do UTC será:

2008 dezembro 31, 23h 59m 59s XNUMX
2008 dezembro 31, 23h 59m 60s XNUMX
2009 janeiro 1, 0h 0m 0s

A diferença entre a UTC e o TAI do Atomic Time Internacional é:

2006 janeiro 1, 0h UTC, para 2009 janeiro 1 0h UTC: UTC-TAI = - 33s
2009 janeiro 1, 0h UTC, até novo aviso: UTC-TAI = - 34s

Os segundos de salto podem ser introduzidos em UTC no final dos meses de dezembro

Atomic Clocks O futuro do tempo

Sábado, dezembro 13, 2008

Métodos de acompanhamento do tempo alteraram ao longo da história com uma precisão cada vez maior, sendo o catalisador da mudança.

A maioria dos métodos de cronograma tem sido tradicionalmente baseado no movimento da Terra ao redor do Sol. Por milênios, um dia foi dividido em partes iguais 24 que se tornaram conhecidas como horas. Basar nossos cronogramas na rotação da Terra foi adequado para a maioria de nossas necessidades históricas, no entanto, à medida que a tecnologia avança, a necessidade de uma escala de tempo cada vez mais precisa foi evidente.

O problema com os métodos tradicionais tornou-se aparente quando os primeiros relógios verdadeiramente precisos - o relógio atômico foi desenvolvido no 1950's. Como esses relógios foram baseados na freqüência de átomos e foram precisos dentro de um segundo a cada milhão de anos, logo descobriu-se que o nosso dia, que sempre presumimos como precisamente 24 horas, alterado do dia a dia.

Os efeitos da gravidade da Lua em nossos oceanos fazem com que a Terra diminua e acelere durante sua rotação - alguns dias são mais longos do que 24 horas enquanto outros são mais curtos. Embora essas diferenças minuciosas na duração de um dia tenham feito pouca diferença para nossas vidas diárias, essa imprecisão tem implicações para muitas das nossas tecnologias modernas, como a comunicação por satélite e o posicionamento global.

Uma escala de tempo foi desenvolvida para lidar com as imprecisões na rotação da Terra - Tempo Universal Coordenado (UTC). Baseia-se na tradicional rotação da Terra 24-hora conhecida como Greenwich Meantime (GMT), mas explica as imprecisões na rotação da Terra ao ter chamado "Leap Seconds" adicionado (ou subtraído).

Como a UTC é baseada no tempo contado por relógios atômicos é incrivelmente preciso e, portanto, foi adotado como escala de tempo civil do mundo e é usado pelos negócios e comércio em todo o mundo.

A maioria das redes de computadores pode ser sincronizada com a UTC usando uma O servidor NTP.

Atomic Clocks e o servidor NTP usando a mecânica quântica para contar o tempo

Quinta-feira, dezembro 11, 2008

Dizer que o tempo não é tão direto como a maioria das pessoas pensa. Na verdade, a própria pergunta, "qual é a hora?" é uma questão que, mesmo a ciência moderna pode deixar de responder. O tempo, segundo Einstein, é relativo; Está passando mudanças para diferentes observadores, afetados por coisas como velocidade e gravidade.

Mesmo quando vivemos no mesmo planeta e experimentamos a passagem do tempo de forma semelhante, dizer que o tempo pode ser cada vez mais difícil. Nosso método original de usar a rotação da Terra desde então foi descoberto ser impreciso, pois a gravidade da Lua faz com que alguns dias sejam maiores do que as horas de 24 e alguns são mais curtos. Na verdade, quando os primeiros dinossauros estavam vagando pela Terra, um dia era apenas 22 horas!

Embora os relógios mecânicos e eletrônicos nos proporcionem alguma precisão, nossas modernas tecnologias exigiram medições de tempo muito mais precisas. GPS, Internet e controle de tráfego aéreo são apenas três indústrias foram divididas segundo tempo é incrivelmente importante.

Então, como podemos acompanhar o tempo? O uso da rotação da Terra mostrou-se não confiável enquanto os osciladores elétricos (relógios de quartzo) e os relógios mecânicos são apenas precisos a um segundo ou dois por dia. Infelizmente, para muitas das nossas tecnologias, uma segunda imprecisão pode ser muito longa. Na navegação por satélite, a luz pode percorrer o 300,000 km em pouco mais de um segundo, tornando a unidade média de sat-nav inútil se houver um segundo de imprecisão.

A solução para encontrar um método preciso de medir o tempo tem sido examinar a mecânica quântica muito pequena. A mecânica quântica é o estudo do átomo e suas propriedades e como eles interagem. Descobriu-se que os elétrons, as minúsculas partículas que orbitavam os átomos alteraram o caminho que eles orbitavam e liberavam uma quantidade precisa de energia quando o faziam.

No caso do átomo de césio, isso ocorre quase nove bilhões de vezes por segundo e esse número nunca se altera e, portanto, pode ser usado como um método ultra confiável de acompanhar o tempo. Os átomos de césio usam relógios atômicos e, de fato, o segundo agora é definido como apenas em 9 bilhões de ciclos de radiação do átomo de césio.

Os relógios atômicos
são a base para muitas de nossas tecnologias. Toda a economia global depende deles com o tempo transmitido por Servidores NTP tempo em redes de computadores ou transmitidos por satélites GPS; garantindo que o mundo inteiro mantenha o mesmo, tempo preciso e estável.

Um cronograma global oficial, o Tempo Universal Coordenado (UTC) foi desenvolvido graças aos relógios atômicos, permitindo que o mundo inteiro funcione ao mesmo tempo dentro de alguns milésimos de segundo um do outro.

Mantendo o tempo com o resto do mundo

Segunda-feira, dezembro 8th, 2008

A servidor de tempo é uma ferramenta de escritório comum, mas o que é isso?

Estamos todos acostumados a ter um tempo diferente do resto do mundo. Quando a América está acordando, Honk Kong vai para a cama, e é por isso que o mundo está dividido em fusos horários. Mesmo no mesmo horário, ainda pode haver diferenças. Na Europa continental, por exemplo, a maioria dos países tem uma hora de antecedência do Reino Unido por causa da mudança do relógio sazonal da Grã-Bretanha.

No entanto, quando se trata de comunicação global, ter diferentes tempos em todo o mundo pode causar problemas, especialmente se você tiver que realizar transações sensíveis ao tempo, como comprar ou vender ações.

Para este efeito, ficou claro no início do 1970 que era necessária uma escala de tempo global. Foi introduzido no 1 janeiro 1972 e foi chamado UTC - Tempo Universal Coordenado. O UTC é mantido pelo relógio atômico, mas é baseado em Greenwich Meantime (GMT - muitas vezes chamado UT1), que é ele próprio um cronograma baseado na rotação da Terra. Infelizmente, a Terra varia em sua rotação, então o UTC conta para isso adicionando um segundo uma ou duas vezes por ano (Leap Second).

Embora seja controverso para muitos, são necessários segundos de salto pelos astrônomos e outras instituições para evitar que o dia flua, caso contrário, seria impossível determinar a posição das estrelas no céu noturno.

UTC agora é usado em todo o mundo. Não é apenas o cronograma global oficial, mas é usado por centenas de milhares de redes de computadores em todo o mundo.

As redes de computadores usam um servidor de tempo de rede para sincronizar todos os dispositivos em uma rede para UTC. A maioria dos servidores de horário usa o protocolo NTP (Network Time Protocol) para distribuir o tempo.

Os servidores de tempo do NTP recebem o tempo dos relógios atômicos através de transmissões de rádio de onda longa de laboratórios nacionais de física ou da rede GPS (Sistema de Posicionamento Global). Todos os satélites GPS carregam um relógio atômico a bordo que transmite o tempo de volta à Terra. Embora este sinal de tempo não seja estritamente falando UTC (é conhecido como tempo GPS) por causa da precisão da transmissão é facilmente convertida para UTC por um GPS NTP servidor.

Como funciona um relógio atômico

Sexta-feira, dezembro 5th, 2008

Relógios atômicos são usados ​​para milhares de aplicativos em todo o mundo. Do controle de satélites para até mesmo sincronizar uma rede de computadores usando um NTP servidor, relógios atômicos mudaram a maneira como controlamos e governamos o tempo.

Em termos de precisão, um relógio atômico é incomparável. Os relógios digitais de quartzo podem manter um tempo preciso por uma semana, não perder mais de um segundo, mas um relógio atômico pode manter o tempo por milhões de anos sem derivar tanto.

Os relógios atômicos Trabalhe com o princípio dos saltos quânticos, um ramo da mecânica quântica que afirma que um elétron; uma partícula carregada negativamente, orbitará um núcleo de um átomo (o centro) em uma certa planície ou nível. Quando absorve ou libera energia suficiente, sob a forma de radiação eletromagnética, o elétron irá pular para um plano diferente - o salto quântico.

Ao medir a frequência da radiação eletromagnética correspondente à transição entre os dois níveis, a passagem do tempo pode ser registrada. Os átomos de césio (cesium 133) são preferidos para o tempo, pois eles têm ciclos 9,192,631,770 de radiação em cada segundo. Como os níveis de energia do átomo de césio (os padrões quânticos) são sempre os mesmos e é um número tão alto, o relógio atômico de césio é incrivelmente preciso.

A forma mais comum de relógio atômico usada hoje no mundo é a fonte de césio. Neste tipo de relógio, uma nuvem de átomos é projetada em uma câmara de microondas e é permitido cair sob a gravidade. Os raios laser retardam esses átomos e a transição entre os níveis de energia do átomo é medida.

A próxima geração de relógios atômicos está sendo desenvolvida usa armadilhas de íons em vez de uma fonte. Os íons são átomos carregados positivamente que podem ser presos por um campo magnético. Outros elementos como o estrôncio estão sendo usados ​​nestes relógios da próxima geração e estima-se que a precisão potencial de um relógio de tração de íons de estrôncio poderia ser 1000 vezes a dos relógios atômicos atuais.

Os relógios atômicos são utilizados por todos os tipos de tecnologias; a comunicação por satélite, o Sistema de Posicionamento Global e até mesmo a negociação na Internet dependem de relógios atômicos. A maioria dos computadores sincroniza indiretamente com um relógio atômico usando um NTP servidor. Esses dispositivos recebem o tempo de um relógio atômico e distribuem em torno de suas redes garantindo tempo preciso em todos os dispositivos.

Sincronizando com um Relógio Atômico

Quinta-feira, dezembro 4, 2008

Os relógios atômicos são o pináculo dos dispositivos que mantêm o tempo. Os relógios atômicos modernos podem manter tempo com tanta precisão que, nos anos 100,000,000 (100 milhões), eles não perdem nem um segundo no tempo. Devido a esse alto nível de precisão, os relógios atômicos são a base para a escala de tempo do mundo.

Para permitir a comunicação global e transações sensíveis ao tempo, como a compra de pilhas e compartilha um cronograma global, com base no tempo contado pelos relógios atômicos, foi desenvolvido em 1972. Este horário, Tempo Universal Coordenado (UTC) é governado e controlado pelo Escritório Internacional de Pesos e Medidas (BIPM) que usam uma constelação de relógios atômicos 230 65 de laboratórios XNUMX em todo o mundo para garantir altos níveis de precisão.

Os relógios atômicos são baseados nas propriedades fundamentais do átomo, conhecido como mecânica quântica. A mecânica quântica sugere que um elétron (partícula carregada negativamente) que orbita o núcleo de um átomo pode existir em diferentes níveis ou planos de órbita dependendo se eles absorvem ou liberam a quantidade correta de energia. Uma vez que um elétron absorveu ou liberou energia suficiente, pode "pular" para outro nível, isso é conhecido como um salto quântico.

A freqüência entre esses dois estados de energia é o que é usado para manter o tempo. A maioria dos relógios atômicos baseia-se no átomo de césio que possui períodos 9,192,631,770 de radiação correspondentes à transição entre os dois níveis. Devido à precisão dos relógios de cesio, o BIPM agora considera um segundo a ser definido como os ciclos 9,192,631,770 do átomo de césio.

Os relógios atômicos são usados ​​em milhares de aplicações diferentes, onde o tempo preciso é essencial. Comunicação por satélite, controle de tráfego aéreo, internet trading e GPs exigem relógios atômicos para manter o tempo. Os relógios atômicos também podem ser usados ​​como um método de sincronizando redes de computadores.

Uma rede de computadores usando um O servidor NTP pode usar uma transmissão de rádio ou os sinais transmitidos por satélites de GPS (Sistema de Posicionamento Global) como fonte de tempo. O programa NTP (ou daemon) assegurará que todos os dispositivos nessa rede serão sincronizados com o tempo, conforme indicado pelo relógio atômico.

Ao usar um NTP servidor sincronizado com um relógio atômico, uma rede de computadores pode executar o tempo universal coordenado idêntico, como outras redes que permitem transações sensíveis ao tempo a serem realizadas em todo o mundo.

Onde encontrar um servidor público NTP

Quarta-feira, dezembro 3rd, 2008

Servidores NTP são usados ​​por redes de computadores como uma referência de sincronização para sincronização. A NTP servidor é realmente um dispositivo de comunicação que recebe o tempo de um relógio atômico e o distribui. Os servidores NTP que recebem um tempo de relógio atômico direto são conhecidos como servidores NTP 1 do estrato.

Um dispositivo 0 de estrato é um relógio atômico propriamente dito. Estas são peças de maquinaria altamente caras e delicadas e só podem ser encontradas em laboratórios de física de grande escala. Infelizmente, existem muitas regras que regem quem pode acessar um servidor 1 estrato por causa de considerações de largura de banda. A maioria dos servidores NPT 1 do stratum são configurados por universidades ou outras organizações sem fins lucrativos e, portanto, tem que restringir quem acessa.

Felizmente, os servidores de horário 2 podem oferecer uma precisão decente como uma fonte de tempo e qualquer dispositivo que receba um sinal de tempo pode ser usado como uma referência de tempo (um tempo de recebimento de dispositivo de um estrato O dispositivo 2 é um servidor 3 de estratos. Dispositivos que recebem tempo de um servidor Xatalog Xtrem é um dispositivo 3 de estratos, e so-on).

Ntp.org, é a casa oficial do projeto do pool NTP e, de longe, o melhor lugar para encontrar um servidor NTP público. Existem duas listas de servidores públicos disponíveis no pool; servidores primários, que exibem os servidores Xatalog do estrato (a maioria dos quais são de acesso fechado) e secundário, que são servidores 1 estratos.

Ao usar um servidor NTP público, é importante respeitar as regras de acesso, pois a falha ao fazê-lo pode fazer com que o servidor fique obstruído com o tráfego e se os problemas persistirem possivelmente descontinuados, pois a maioria dos servidores NTP públicos são configurados como atos de generosidade.

Existem alguns pontos importantes a serem lembrados ao usar uma fonte de tempo na Internet. Primeiro, as fontes de tempo da Internet não podem ser autenticadas. A autenticação é uma medida de segurança incorporada utilizada pelo NTP, mas não está disponível na rede. Em segundo lugar, usar uma fonte de tempo de Internet requer uma porta aberta em seu firewall. Um buraco em um firewall pode ser usado por usuários mal-intencionados e pode deixar um sistema vulnerável a ataques.

Para aqueles que exigem uma fonte de sincronização segura ou quando a precisão é altamente importante, um dedicado NTP servidor que recebe um sinal de temporização de transmissões de rádio de ondas longas ou a rede de GPs.

MSF Outage 11 dezembro Sem sinal MSF

Terça-feira, dezembro 2nd, 2008

Serviços de tempo e frequência NPL


Aviso de Interrupção MSF 60 kHz Sinal de Tempo e Frequência

A transmissão de sinal de freqüência e freqüência MSF 60 kHz da estação de rádio Anthorn será encerrada durante o período:

11 dezembro 2008
de 10: 00 UTC para 14: 00 UTC

A interrupção da transmissão é necessária para permitir que o trabalho de manutenção programada seja realizado em segurança.

Se você quiser baixar um PDF deste aviso, clique em Aqui.

Se você precisar de qualquer informação adicional, entre em contato time@npl.co.uk

Ou, alternativamente, consulte o nosso site: www.npl.co.uk/time

Organizando uma árvore de estratos do servidor NTP

Segunda-feira, dezembro 1st, 2008

NTP (Network Time Protocol) é o protocolo de sincronização de tempo mais utilizado na Internet. O motivo do seu sucesso é que é flexível e altamente preciso (além de ser gratuito). O NTP também é organizado em uma estrutura hierárquica, permitindo que milhares de máquinas sejam capazes de receber um sinal de temporização de apenas um NTP servidor.

Obviamente, se mil máquinas em uma rede todas as tentativas para receber um sinal de tempo do servidor NTP ao mesmo tempo, a rede se tornaria um gargalo eo servidor NTP seria inútil.

Por esse motivo, existe a camada de NTP stratum. No topo da árvore está o servidor de horário NTP que é um dispositivo 1 de estrato (um dispositivo 0 de estrato sendo o relógio atômico do qual o servidor recebe seu tempo). Abaixo de NTP servidor, vários servidores ou computadores recebem informações de temporização do dispositivo 1 do estrato. Esses dispositivos confiáveis ​​tornam-se servidores 2 de estrato, que, por sua vez, distribuem suas informações de tempo para outra camada de computadores ou servidores. Estes, então, tornam-se dispositivos 3 do estrato que, por sua vez, podem distribuir informação de temporização para estratos mais baixos (estrato 4, estrato 5, etc.).

Em todos os NTP pode suportar até nove níveis de estrato, embora quanto mais longe do dispositivo 1 stratum original eles são menos precisos a sincronização. Para um exemplo de como uma hierarquia NTP está configurada, veja isso árvore estratificada