Arquivo para a categoria 'timekeepers'

Sincronização de relógio atômico facilitada com um servidor de tempo NTP

Sexta-feira, janeiro 22nd, 2010

Os relógios atômicos são os melhores em dispositivos de cronometragem. A sua precisão é incrível, pois um relógio atômico não irá diminuir até um segundo dentro de um milhão de anos, e quando isso é comparado aos próximos melhores cronômetros, como o relógio eletrônico que pode derrubar por segundo em uma semana, um relógio atômico é incrivelmente mais preciso.

Os relógios atômicos são usados ​​em todo o mundo e são o coração de muitas tecnologias modernas, tornando capaz uma infinidade de aplicações que consideramos como garantidas. O comércio por Internet, a navegação por satélite, o controle de tráfego aéreo e a banca internacional são todas as indústrias que dependem fortemente

Eles também governam o cronograma do mundo, UTC (Tempo Universal Coordenado), que é mantido verdadeiro por uma constelação desses relógios (embora a UTC tenha que ser ajustada para acomodar a desaceleração da rotação da Terra, adicionando alguns segundos).

Muitas vezes, as redes de computadores são executadas sincronizadas com a UTC. Essa sincronização é vital nas redes que realizam transações sensíveis ao tempo ou requerem altos níveis de segurança.

Uma rede de computadores sem sincronização de tempo adequada pode causar muitos problemas, incluindo:

Perda de dados

  • Dificuldades em identificar e registrar erros
  • Maior risco de violações de segurança.
  • Não é possível realizar transações sensíveis ao tempo

Por estas razões, muitas redes de computadores devem ser sincronizadas com uma fonte de UTC e mantidas o mais preciso possível. E, embora os relógios atômicos sejam grandes dispositivos volumosos mantidos nos confins dos laboratórios de física, usá-los como fonte de tempo é incrivelmente simples.

Network Time Protocol (NTP) é um protocolo de software concebido unicamente para a sincronização de redes e sistemas informáticos e utilizando um servidor NTP dedicado o tempo de um relógio atômico pode ser recebido pelo servidor de tempo e distribuído em torno da rede usando NTP.

Servidores NTP usar freqüências de rádio e, mais comumente, os sinais de satélite GPS para receber os sinais de sincronização do relógio atômico, que se espalham por toda a rede com o NTP ajustando regularmente cada dispositivo para garantir que ele seja o mais preciso possível.

Você lembrou o salto em segundo lugar neste ano?

Terça-feira, janeiro 12, 2010

Quando você contou a véspera de Ano Novo para marcar o início do próximo ano você começou no 10 ou 11? A maioria dos festejadores teria contado a partir de dez, mas eles teriam sido prematuros este ano, pois houve um segundo adicional adicionado ao ano passado - o segundo salto.

Os segundos de salto normalmente são inseridos uma ou duas vezes por ano (normalmente na véspera de Ano Novo e em junho) para garantir a escala de tempo global UTC (Tempo Universal Coordenado) coincide com o dia astronômico.

Os segundos de pulo foram usados ​​desde que a UTC foi implementada pela primeira vez e eles são um resultado direto de nossa precisão no cronograma. O problema é que o moderno relógios atômicos são dispositivos de cronometragem muito mais precisos do que a própria Terra. Observou-se quando os relógios atômicos foram desenvolvidos pela primeira vez que o comprimento de um dia, que já era exatamente 24 horas, variou.

As variações são causadas pela rotação da Terra que é afetada pela gravidade das luas e pelas forças da maré da Terra, que diminui cada vez mais a rotação da Terra.

Essa desaceleração rotacional, embora apenas minúscula, se não for marcada, o dia UTC em breve entrará na noite astronômica (embora em vários milhares de anos).

A decisão sobre se um Leap Second é necessário é o mandato do International Earth Rotation Service (IERS), no entanto, Leap Seconds não é popular entre todos e eles podem causar problemas potenciais quando são introduzidos.

UTC é usado por Servidores NTP tempo (Network Time Protocol) como uma referência de tempo para sincronizar redes de computadores e outras tecnologias e a interrupção que os segundos de Leap podem causar é visto como não vale a pena o aborrecimento.

No entanto, outros, como astrônomos, dizem que não manter a UTC de acordo com o dia astronômico tornariam o estudo dos céus quase impossível.

O último salto, inserido antes deste foi no 2005, mas houve um total de 23 segundos adicionados ao UTC desde 1972.

Lidar com o tempo em todo o globo

Terça-feira, janeiro 5, 2010

Não importa onde estivéssemos no mundo, todos precisamos saber o tempo em algum momento do dia, mas, enquanto cada dia dura a mesma quantidade de tempo, não importa onde você esteja na Terra, a mesma escala de tempo não é usada globalmente.

A impraticabilidade dos australianos que têm que acordar no 17.00 ou aqueles nos EUA ter que começar a trabalhar no 14.00 descartaria processar uma única escala de tempo, embora a idéia tenha sido discutida quando o Greenwich foi nomeado o meridiano principal oficial (onde a data oficial é oficialmente) para o mundo há alguns anos 125.

Embora a idéia de uma escala de tempo global tenha sido rejeitada pelos motivos acima, mais tarde foi decidido que as linhas longitudinais 24 dividiriam o mundo em diferentes fuso horários. Estes emanavam do GMT ao redor com aqueles no lado oposto do planeta sendo + 12 horas.

No entanto, pelo crescimento das comunicações globais do 1970, uma escala de tempo universal foi finalmente adotada e ainda é muito útil hoje, apesar de muitas pessoas terem nunca ouvido falar disto.

UTC, Tempo Universal Coordenado, é baseado em GMT (Greenwich Meantime), mas é mantido por uma constelação de relógios atômicos. Ele também explica as variações na rotação da Terra com segundos adicionais, conhecidos como "segundos de salto", adicionados duas vezes por ano para neutralizar a desaceleração da rotação da Terra causada por forças gravitacionais e de maré.

Enquanto a maioria das pessoas nunca ouviu falar da UTC ou usou diretamente sua influência em nossas vidas em inegável com redes de computadores, todas sincronizadas com a UTC via Servidores NTP tempo (Network Time Protocol).

Sem essa sincronização em uma única escala de tempo, muitas das tecnologias e aplicações que consideramos garantidas hoje seriam impossíveis. Tudo da negociação global de ações e ações para compras na internet, e-mail e redes sociais só é possível graças à UTC e ao O servidor NTP.

Sincronização de tempo européia com DCF-77

Domingo, janeiro 3rd, 2010

O sinal DCF 77 é uma transmissão de transmissão de onda longa em 77 KHz de Frankfurt na Alemanha. O DCF -77 é transmitido pelo Physikalisch-Technische Bundesanstalt, o laboratório alemão de física nacional.

O DCF-77 é uma fonte precisa de tempo UTC e é gerado por relógios atômicos que garantem sua precisão. DCF-77 é uma fonte útil de tempo que pode ser adotada em toda a Europa por tecnologias que precisam de uma referência de tempo precisa.

Relógios com controle de rádio e tempo os servidores de rede receba o sinal de tempo e, no caso de servidores temporários, distribuir este sinal de tempo através de uma rede informática. A maioria da rede de computadores usa NTP para distribuir o sinal de tempo DCF 77.

Existem vantagens de usar um sinal como DCF para sincronização de horário. DCF é uma onda longa e, portanto, é susceptível de interferência de outros dispositivos elétricos, mas pode penetrar em edifícios que dão ao sinal DCF uma vantagem em relação à outra fonte de tempo UTC geralmente disponível - GPS (Sistema de Posicionamento Global) - que requer uma visão aberta do céu para receber transmissões por satélite.

Outros sinais de rádio de onda longa estão disponíveis em outros países que são semelhantes ao DCF-77. No Reino Unido, o sinal MSF-60 é transmitido pelo NPL (National Physical Laboratory) de Cumbria, enquanto nos EUA, o NIST (Instituto Nacional de Padrões e Horário) transmite o sinal WVBB de Boulder, Colorado.

Servidores NTP tempo são um método eficiente de receber essas transmissões de ondas longas e depois usar o código de tempo como uma fonte de sincronização. Servidores NTP pode receber DCF, MSF e WVBB, bem como muitos deles também podem receber o sinal GPS também.

UTC Qual é o tempo?

Quarta-feira, dezembro 30th, 2009

Desde os primeiros dias da revolução industrial, quando as linhas ferroviárias e o telégrafo atravessavam os fusos horários, tornou-se evidente que era necessário um cronograma global que permitiria o mesmo tempo para ser usado, independentemente de onde estivesse no mundo.

A primeira tentativa em um cronograma global foi GMT - Horário de Greenwich. Isto foi baseado no Meridiano de Greenwich, onde o sol está diretamente acima no meio-dia 12. GMT foi escolhido, principalmente por causa da influência do império britânico sobre o resto, se o globo.

Outras escalas de tempo foram desenvolvidas como British Railway Time, mas GMT foi a primeira vez que um sistema de tempo verdadeiramente global foi usado em todo o mundo.

O GMT permaneceu como o cronograma global durante a primeira metade do século XX, embora as pessoas começaram a se referir como UT (Tempo Universal).

No entanto, quando os relógios atômicos foram desenvolvidos em meados do século XX, logo se tornou evidente que o GMT não era suficientemente preciso. Uma escala de tempo global baseada no tempo contado pelos relógios atômicos foi desejada para representar esses novos cronômetros precisos.

O Tempo Atômico Internacional (TAI) foi desenvolvido para este propósito, mas os problemas no uso de relógios atômicos logo se tornaram evidentes.

Pensa-se que a revolução da Terra em seu eixo era um exato 24 horas. Mas, graças aos relógios atômicos, descobriu-se que o giro da Terra varia e que o 1970 tem diminuído. Esta desaceleração da rotação da Terra precisava ser explicada, caso contrário, as discrepâncias poderiam acumular-se e a noite seria devastadora no dia-a-dia (embora em muitos milênios).

Tempo Universal Coordenado foi desenvolvido para contrariar isso. Com base em TAI e GMT, a UTC permite o desaceleramento da rotação da Terra, adicionando saltos de segundos a cada ano ou dois (e às vezes duas vezes por ano).

A UTC agora é uma escala de tempo verdadeiramente global e é adotada por nações e tecnologias em todo o mundo. As redes de computadores são sincronizadas com a UTC via tempo os servidores de rede e eles usam o protocolo NTP para garantir a precisão.

Rádio Controle de Relógios Atômicos em Ondas Curtas

Sábado, dezembro 26, 2009

Os relógios atômicos são uma maravilha em comparação com outras formas de cronometristas. Isso levaria os anos 100,000 para um relógio atômico perder um segundo no tempo, que é assombroso, especialmente quando você o compara com relógios digitais e mecânicos que podem derrubar tanto em um dia.

Mas relógios atômicos não são peças práticas de equipamento para ter em torno do escritório ou do lar. Eles são volumosos, caros e exigem condições de laboratório para operar efetivamente. Mas fazer uso de um relógio atômico é bastante direto, especialmente como os guardiões atômicos do tempo gostam NIST (Instituto Nacional de Padrões e Tempo) e NPL (Laboratório Nacional de Física) transmitiram o tempo contado por seus relógios atômicos no rádio de ondas curtas.

NIST transmite seu sinal, conhecido como WWVB de Boulder, Colorado e é transmitido em uma freqüência extremamente baixa (60,000 Hz). As ondas de rádio da estação da WWVB podem cobrir todos os Estados Unidos continentais mais muito do Canadá e da América Central.

O sinal NPL é transmitido em Cumbria no Reino Unido e é transmitido ao longo de frequências semelhantes. Este sinal, conhecido como MSF, está disponível na maior parte do Reino Unido e sistemas similares estão disponíveis em outros países, como Alemanha, Japão e Suíça.

Os relógios atômicos controlados por rádio recebem esses sinais de ondas longas e correm-se de acordo com qualquer drift detectada pelo relógio. As redes de computadores também aproveitam esses sinais de relógios atômicos e usam o protocolo NTP (Network Time Protocol) e dedicado Servidores NTP tempo para sincronizar centenas e milhares de computadores diferentes.

Relógio Atômico para ser anexado à Estação Espacial Internacional

Quarta-feira, dezembro 16th, 2009

Um dos maiores do mundo relógios atômicos precisos deve ser lançado em órbita e anexado à Estação Espacial Internacional (ISS), graças a um acordo assinado pela agência espacial francesa.

O relógio atômico do PHARAO (Projetar Horloge Atomique by Refroidissement d'Atomique) é anexado à ISS em um esforço para testar mais precisamente a teoria de Einstein relativamente, bem como aumentar a precisão do Tempo Universal Coordenado (UTC) entre outros experimentos de geodesia.

PHARAO é um relógio atômico de césio de próxima geração com uma precisão que corresponde a menos de um segundo em todos os anos 300,000. O PHARAO será lançado pela Agência Espacial Europeia (ESA) no 2013.

Os relógios atômicos são os dispositivos de cronometragem mais precisos disponíveis para a humanidade, mas são susceptíveis a mudanças na atração gravitacional, conforme previsto pela teoria de Einstein, já que o próprio tempo é disparado pela atração da Terra. Ao colocar este relógio atômico preciso em órbita, o efeito da gravidade da Terra diminui, permitindo que o PHARAO seja mais preciso do que o relógio baseado na Terra.

Enquanto relógios atômicos não são novos para a órbita, tantos satélites; incluindo a rede de GPS (Sistema de Posicionamento Global) conter relógios atômicos, no entanto, o PHARAO estará entre os relógios mais precisos já lançados no espaço, permitindo que ele seja usado para análises muito mais detalhadas.

Os relógios atômicos existem desde o 1960, mas seu crescente desenvolvimento abriu caminho para tecnologias cada vez mais avançadas. Os relógios atômicos formam a base de muitas tecnologias modernas da navegação por satélite para permitir que as redes de computadores se comuniquem efetivamente em todo o mundo.

Redes de computadores receber sinais de tempo de relógios atômicos via Servidores NTP tempo (Network Time Protocol), que pode sincronizar com precisão uma rede de computadores dentro de alguns milissegundos de UTC.

IEEE 1588 Time Protocol promete sincronização de tempo mais precisa

Domingo, dezembro 6, 2009

Apesar de estar por mais de vinte anos, o atual protocolo de tempo preferido pela maioria das redes, NTP (Network Time Protocol) tem alguma concorrência.

Atualmente, o NTP é usado para sincronizar redes de computadores usando tempo os servidores de rede (Servidores NTP). Atualmente, o NTP pode sincronizar uma rede de computadores com alguns milissegundos.

O Precision Time Protocol (PTP) ou IEEE 1588 foi desenvolvido para sistemas locais que requerem alta precisão (nível nano-segundo). Atualmente, esse tipo de precisão está além das capacidades de NTP.

O PTP requer uma relação de mestre e escravo na rede. É necessário um processo de dois passos para sincronizar dispositivos usando o IEEE 1588 (PTP). Em primeiro lugar, a determinação de qual dispositivo é o mestre é necessária, então os deslocamentos e atrasos naturais da rede são medidos. PTP usa o algoritmo Best Master Clock (BMC) para determinar qual relógio na rede é o mais preciso e torna-se o mestre, enquanto todos os outros relógios se tornam escravos e sincronizam com este mestre.

IEEE (Instituto de Engenheiros Elétricos e Eletrônicos) descreve IEEE 1588 ou (PTP) como projetado para "preencher um nicho não bem servido por qualquer um dos dois protocolos dominantes, NTP e GPS. O IEEE 1588 foi projetado para sistemas locais que exigem precisões muito altas além das que podem ser alcançadas usando NTP. Também é projetado para aplicações que não podem suportar o custo de um receptor GPS em cada nó ou para quais sinais GPS são inacessíveis. "(Citado em Wikipedia)

A PTP pode fornecer precisão para alguns nano-segundos, mas esse tipo de precisão não é exigido pela maioria dos usuários de rede, no entanto, o uso do alvo de PTP parece ser de banda larga móvel e outras tecnologias móveis, pois o PTP oferece suporte a informações do tempo de uso, usadas por cobrança e serviço de nível de serviço, funções de relatórios em redes móveis.

Fatos do tempo

Quinta-feira, julho 2nd, 2009

De relógios de pulso para relógios atômicos e servidores de tempo NTP, a compreensão do tempo tornou-se crucial para muitas tecnologias modernas, como a navegação por satélite e as comunicações globais.

Da dilatação do tempo aos efeitos da gravidade no tempo, o tempo tem muitas facetas estranhas e maravilhosas que os cientistas estão apenas começando a entender e utilizar. Aqui estão alguns fatos interessantes, estranhos e incomuns sobre o tempo:

• O tempo não é separado do espaço, o tempo compõe o que Einstein chamou de espaço espacial de quatro dimensões. O tempo espacial pode ser entortado pela gravidade, o que significa que o tempo diminui quanto maior a influência gravitacional. Graças a relógios atômicos, o tempo na terra pode ser medido em cada polegada subsequente acima da superfície da Terra. Isso significa que todos os pés dos corpos são mais novos do que a cabeça enquanto o tempo corre mais lento, o mais baixo para o chão que você obtém.

• O tempo também é afetado pela velocidade. A única constante no universo é a velocidade da luz (no vácuo) que é sempre a mesma. Devido às famosas teorias da relatividade de Einstein, alguém viajando perto da velocidade da luz, uma viagem a um observador que levaria milhares de anos teria passado em segundos. Isso é chamado de dilatação do tempo.

• Não há nada na física contemporânea que proíba o tempo de viajar tanto para a frente como para trás no tempo.

• Há 86400 segundos em um dia, 600,000 em uma semana, mais do que 2.6 milhões em um mês e mais do que 31 milhões em um ano. Se você viver para ser 70 anos de idade, então você terá vivido em 5.5 bilhões de segundos.

• Um nanosegundo é um bilionésimo de segundo ou aproximadamente o tempo que leva para a luz viajar sobre o pé 1 (30 cm).

• Um dia nunca é 24 horas. A rotação da Terra está acelerando gradualmente, o que significa que o cronograma global UTC (tempo universal coordenado) deve ter um salto de segundos adicionados uma ou duas vezes por ano. Estes segundos de salto são automaticamente contabilizados em qualquer sincronização de relógio que use NTP (Network Time Protocol), como um servidor dedicado tempo NTP.

Escolhendo uma fonte de tempo o que fazer e o que não fazer

Sexta-feira, junho 12th, 2009

sincronização de tempo é crucial para muitas das aplicações que fazemos na internet nos dias de hoje; internet banking, reservas on-line e até on-line, todos os leilões exigem sincronização de tempo de rede.

Falhar em garantir que seus servidores estejam adequadamente sincronizados significaria que muitas dessas aplicações seriam impossíveis de alcançar; As reservas de assentos poderiam ser vendidas mais de uma vez, as propostas mais baixas poderiam ganhar leilões na internet e seria possível retirar as economias de vida do banco duas vezes se não tivessem sincronização adequada (bom para você não para o banco).

Mesmo as redes de computadores que, por sua vez, não dependem de transações sensíveis ao tempo também precisam ser sincronizadas adequadamente, pois pode ser quase impossível rastrear erros ou proteger o sistema de ataques maliciosos se os timestamps diferirem em várias máquinas na rede .

Muitas organizações optam por usar servidores de tempo da internet como fonte de UTC (Tempo Universal Coordenado) - cronograma global controlado pelo relógio atômico. Embora existam muitos problemas de segurança ao fazê-lo, como deixar um buraco no firewall para se comunicar com o servidor de tempo e não ter nenhuma autenticação para o protocolo de sincronização de horário NTP (Network Time Protocol).

No entanto, ao dizer que muitos administradores de rede ainda optam por usar servidores de tempo on-line como uma fonte de UTC, independentemente das implicações de segurança, embora existam outros problemas que os administradores devem estar cientes. Na internet existem dois tipos de servidor de tempo: o estrato 1 e o estrato 2. Os servidores Stratum 1 recebem um sinal de tempo direto de um relógio atômico, enquanto os servidores Xatum Xatrix recebem um sinal de tempo de um servidor 2 do estrato. A maioria dos servidores 1 da Internet está fechada - indisponível para a maioria dos administradores e pode haver uma falta de precisão ao usar um servidor 1 de estrato.

Para obter informações de temporização mais precisas, seguras e precisas servidores externos de tempo NTP são a melhor opção, pois estes são dispositivos 1 de estratos que podem sincronizar centenas de máquinas em uma rede para o mesmo tempo UTC.